1. Introduction

- The pore throat size and its distribution is important in many fluid transport processes in porous media (like reservoir rock) [1]. The pore throat size affects the fluid saturation distribution, porosity, permeability and, to some extent, wettability.
- Capillary pressure curves acquired using an MRI-based technique called GIT-CAP can be used to determine pore throat size distributions by calculating the saturation change at each pressure and converting the pressure into a pore throat size.
- Relative permeability is the ratio of the permeability of one fluid with a second fluid present compared to having no second fluid present.
- Relative permeability can be modeled from capillary pressure curves.

5.1 Relative Permeability from Pc

- Relative permeability can be calculated from capillary pressure using a number of existing techniques including the Burdine model [6].
- The wetting k_w and non-wetting, k_{nw}, relative permeability are:

$$k_w = \left(\frac{\lambda_w}{\lambda_{nw}}\right)^2 \int_0^{\frac{\phi \Delta P_c}{\rho_g}} \frac{dS}{P_c}$$

$$k_{nw} = \left(\frac{\lambda_{nw}}{\lambda_w}\right)^2 \int_0^{\frac{\phi \Delta P_c}{\rho_g}} \frac{dS}{P_c}$$

- Applying the Purcell model directly to the Brooks-Corey capillary pressure model:

$$k_w = (1-S_w)^{n}$$

$$k_{nw} = (1-S_{nw})^{n}$$

5.2 Relative Permeability from Pc

- The capillary pressure data can be modeled and the conversion to relative permeability can be applied directly using the modeled constants.
- Below is a Brooks-Corey capillary pressure model equation.

$$P_c = P_e + \left(\frac{S_r - S_{wr}}{S_r - S_w}\right)^{n}$$

- Applying the Purcell model directly to the Brooks-Corey Pc model yields:

$$k_w = (1-S_w)^{n}$$

$$k_{nw} = (1-S_{nw})^{n}$$

6. Imbibition and Drainage Pc

- Oil/Brine imbibition and drainage ([1] and [2]) can be acquired using the MRI-based technique [4].
- A unique quality of MRI-based Pc is that both positive and negative pressures can be measured by moving the oil/brine contact to the middle of the rock.

7. Results (Relative Permeability from Pc)

- The relative permeability model can be directly applied to the Pc data.
- The difficulty lies in selecting the correct irreducible or residual saturation value, S_r.

8. Pore Size/Throat Comparisons

- The graph below shows an overlay of the pore size distribution from the T2 NMR data; mercury injection pore throat size; and the pore throat size derived from the MRI-based Pc.
- The T2 NMR data was scaled using a relaxivity value of 6.24 um/s (additional results are shown in the table in Section 11).

9. Capillary Pressure Comparisons

- Once the relaxivity value is known, the T2 NMR pore size distribution can be used to model a Pc curve (similar to mercury injection).
- Below is a comparison of the MRI-based Pc measurement; a Brooks-Corey fit of the MRI-based data; and the T2 NMR derived Pc curve.

10. Conclusions

- The pore throat size acquired from GIT-CAP is non-destructive and uses reservoir fluids so there is no impact on the clays, pore matrix or wettability.
- Determination of the NMR relaxivity value allows for the T2 pore size distribution to be quantified and capillary pressure can be modeled.
- Relative permeability can be modeled directly from the Pc data or from the model applied to the Pc data.
- Standard T2 cut-off values are not valid in tight rocks.

11. References

3. US patent 7,352,179, “Methods and apparatus for measuring capillary pressure in a sample”
5. Alshubhaia, UAE. 2008

Acknowledgements

DPG would like to thank SKM Service, Aberdeen who performed the mercury injection analysis. DPG would also like to thank Helix, Talisman, Exxon, Chevron, Husky Energy, and ConocoPhillips for discussions and/or providing samples over the course of these experiments.